
Scheduling: Open problems old and new
(an update on Schuurman-Woeginger’99)

Nikhil Bansal 

(TU Eindhoven, Netherlands)



Very influential survey by Schuurman and Woeginger’99: 

Ten open problems in approximation for scheduling

Dramatic progress in the field in last 20 years

Several of these problems completely solved

Several new rounding techniques: Iterated Rounding

New relaxations: Configuration LPs, Knapsack cover inequalities

Better understanding of SDPs

LP/SDP Hierarchies

Unique Games Conjecture, progress on hardness

…



Goal
Describe some of these developments/ideas

Mention new problems/remaining challenges

Mostly approximation, classic objectives

Disclaimer: Necessarily incomplete and biased

Will not cover: Online, game theory + scheduling, energy, …

Offline: Entire input known in advance. Find best solution.

(Often NP-Hard)   Approximation ratio (Alg) = max
𝐼

Alg(I)/OPT(I)

Don’t know OPT:  compare with some kind of lower bound on OPT. 



SW’99  structure

Problems 1,2,3,9  (precedence constraints)

Problems 4,8  (Unrelated machines)

Problem 10 (Flow Time)

Problems 5,6,7  (shop scheduling)



Precedence constraints

Open Prob. 1:  P|prec| 𝐶𝑚𝑎𝑥

(Find 2 − 𝛿 apx.  or show 
4

3
+ 𝛿 hardness)

Setting: Jobs of size 𝑝𝑗 (think 𝑝𝑗=1), m identical machines 

Precedence (DAG) 𝑖 ≺ 𝑗 (j cannot start before i ends)

Minimize Makespan

Graham’s list scheduling: 2-1/m apx

OPT ≥
 𝑗 𝑝𝑗

𝑚
(average load)  

OPT ≥ length of longest chain

(Q: What about unrelated machines?) M1  M2   M3



Precedence constraints

Open Prob. 1:  P|prec| 𝐶𝑚𝑎𝑥

(Find 2 − 𝛿 apx.  or show 
4

3
+ 𝛿 hardness)

Thm (Svensson’10): Cannot beat 2 assuming UGC variant.



Problem 1b.   What if m = O(1), can you get 2 − 𝛿?

(running time can be any f(m))

LP formulations, time indexed 𝑥𝑖,𝑗,𝑡 are weak

Claire Mathieu (MAPSP): Can hierarchies help?

Thm (Rothvoss’16): Can get  1 + 𝜖 apx.

Need exp log log 𝑛 2 rounds:  k rounds,  time = 𝑛𝑘.

quasi-poly  << time  <<  exponential

Blocks of m+1 jobs



Weighted completion time

Open Prob 9.   1|prec|  𝑗 𝑤𝑗𝐶𝑗 Find a 2 − 𝛿 apx? 

(weighted completion time, 1 machine)

Several different 2 approximations (since 80’s)

LPs, Gantt charts, vertex cover, graph decompositions, …

Thm [Bansal-Khot’09]: 2 best possible, assuming UGC variant



Key idea: Vertex Ordering Problem

Given n jobs of size 1.   Groups 𝐺1, … , 𝐺𝑘 of jobs.

Order jobs. Group 𝐺𝑖 finishes when all jobs scheduled

Question: What if groups are random (or all)  with 
1

𝜖
jobs. 

Answer:  Most groups finish around 𝑛 1 − 𝜖

Question:  What if groups are disjoint

Answer:  Objective around n/2

1    2     3    …    n

G1 = {1,3,4}

G2 = {2,4,5}

G3 = {1,3,5}

…



Key idea: Vertex Ordering Problem

Given n jobs of size 1.   Groups 𝐺1, … , 𝐺𝑘 of jobs.

Order jobs. Group 𝐺𝑖 finishes when all jobs scheduled

Bansal-Khot’09: Assuming UGC, cannot distinguish in poly time 

Good case: There exists an ordering, s.t. on average group 

finished around n/2  (structure)

Bad case: For every ordering, most groups finish close to end

(random-like)

1    2     3     4    5

G1 = {1,3,4}

G2 = {2,4,5}

G3 = {1,3,5}

…



How to relate to 1|prec|  𝑗 𝑤𝑗𝐶𝑗?

Given n jobs of size 1.   Groups 𝐺1, … , 𝐺𝑘 of jobs.

Order jobs. Group 𝐺𝑖 finishes when all jobs scheduled

Type 1:   Jobs 1,…,n :   Size = 1, Weight = 0

Type 2:  A job for each group:  Size = 0,  Weight = 1 

1    2     3     4    5

G1 = {1,3,4}

G2 = {2,4,5}

G3 = {1,3,5}

…



1 min UGC Hardness

Template:  Create instance on hypercube     x = 𝑥1, … , 𝑥𝑑

Solution = 0-1 labeling of hypercube

s.t. Any dictator f(x) = 𝑥𝑖 (good solution)

“far” from dictator:  formalized by low influence (bad soln.)

Groups = subcubes of hypercube  on 𝜖d dimensions.

Dictator labeling =  good value

Low influence, balanced labeling = bad   (key technical part)

Long code test with 1 free bit:  

Structured independent set hardness

𝜖n

1 − 𝜖 n/2
1 − 𝜖 n/2



Back to P|prec| 𝐶𝑚𝑎𝑥

Svensson’s insight to show hardness of 2:    

Combine this +  blocks of m+1  (m+ 𝜖m) instance

Some technical work: Groups >> number of jobs

Blocks of m+1 jobs Jobs Group-jobs

Good case

Bad case



When m=O(1)

Rothvoss’16: Approximation scheme  (super poly. time)

Key insight:  List scheduling ≤ Load + max-chain

Done if chains are small (≤ 𝜖 OPT)

Use Sherali Adams Hierarchies to break chains.



1 min introduction to Hierachies

Traditional LP:  𝑥𝑖,𝑗,𝑡

Supposed to be 0-1, interpret fraction as probabilities.

New variables on k tuples:  𝑥𝑖,𝑗,𝑡,𝑖′,𝑗′,𝑡′

Interpretation: joint probability 

Hierarchies min  cx    Ax =B   (Base LP)

Lifted LP:  Should satisfy  consistency 

Obvious relations  𝑥𝑖,𝑗,𝑡,𝑖′,𝑗′,𝑡′ ≤ 𝑥𝑖,𝑗,𝑡

𝑥𝑖,𝑗,𝑡 =  𝑖′,𝑡′ 𝑥𝑖,𝑗,𝑡,𝑖′,𝑗′,𝑡′

Can interpret  Pr[A|B] = Pr[𝐴 ∩ 𝐵]/Pr[B]    (𝑥𝑖,𝑗,𝑡,𝑖′,𝑗′,𝑡′ /𝑥𝑖,𝑗,𝑡)

T

S T



Reducing chain length

Given a k-level solution, can condition on a variable (i.e. set 

x=0 or 1) and get valid k-1 level solution.

(lose a level at each conditioning: precious resource)

In each interval of size T’ make chains << T’  

If long chain, condition on middle job

(half the chain moves a level down)

+ Clever recursion

…

Time horizon 𝑇 ≤ 𝑛𝑚

Level of job j =

Span [support(𝑥𝑖,𝑗,𝑡)]



Open Prob 2: Q|prec| 𝐶max

Q: Uniform machines model     speed 𝑠𝑖,  size = 
𝑝𝑗

𝑠𝑖

O(log n)          Chudak Shmoys 90’s  (vs. 2 for identical machines)

Problem: Find better apx. or show non-constant hardness

(also in top 10 list of Shmoys-Williamson)

Probably hardness is the right answer

17/35

𝜖n

[Bazzi, Norouzi-Fard’15]: Non-constant 

hardness assuming a certain structured

Hypergraph vertex cover is hard



Open Prob. 3: P|prec|𝐶max with communication delays

Model:  𝑗 ≺ 𝑘 Lags 𝑐𝑗𝑘 if j and k run on different machines

(models transition time across machines/networks)

Not understood at all. Almost completely open.

Only very special cases (𝑝𝑗 = 1).  Only apx hardness.

Finding any promising LP/ SDP relaxations would be a big 

step.

Open Prob 3: P|prec, 𝑐𝑗𝑘 |𝐶max



Shop Scheduling

Open problems 5,6,7

Huge area, many variants

Matching hardness in many cases 

Mastrolilli, Svensson (job shops)

Bansal, Khot (open shops)

…



Unrelated machine setting

𝑝𝑖𝑗:  Size of job j on machine i (unrelated: 𝑝𝑖𝑗 arbitrary)

Open prob. 8:  R ||  𝑗 𝑤𝑗𝐶𝑗

Can you beat 3/2    

[Schulz Skutella, Skutella, Chudak, Sethuraman Squillante: late 90’s]

Open prob. 4:  R || 𝐶max

Can you beat 2  [Lenstra, Shmoys, Tardos 87] 

1 32

21 3 54
n=5  Jobs

m=3  machines
𝑝24



Total Weighted Completion Time

Min   𝑗 𝑤𝑗𝐶𝑗 𝐶𝑗: Completion time of j

On any machine i, Smith rule: Decreasing order of 
𝑤𝑗

𝑝𝑖𝑗

Only issue:  Where  to assign jobs

Objective:    𝑖  𝑗 𝑤𝑗 (  𝑗′≼𝑖𝑗
𝑝𝑖𝑗′ 𝑥𝑖𝑗′ 𝑥𝑖𝑗 )

Smith ordering   ≺𝑖 :      𝑗’ ≺𝑖 𝑗 if    𝑤𝑗′/𝑝𝑖𝑗′ ≥ 𝑤𝑗/𝑝𝑖𝑗

Break ties arbitrarily to get total ordering

Total completion time of these jobs
𝑤1𝑝1 + 𝑤2 𝑝1 + 𝑝2 + 𝑤3 𝑝1 + 𝑝2 + 𝑝3

3
2
1



3/2: Convex programming   

[Skutella,  Sethuraman Squillante,  Chudak late 90’s]

Thm [Bansal, Srinivasan, Svensson’16]:  3/2 – 10−7 apx.

Convex Program: Integrality gap of 3/2

New SDP formulation

Independent Randomized Rounding cannot beat 3/2

New dependent rounding w/ strict negative correlation



Convex Programming

Objective (machine i):  𝑗 𝑤𝑗 (  𝑗′≼𝑖𝑗
𝑝𝑖𝑗′ 𝑥𝑖𝑗′ 𝑥𝑖𝑗 )

Convex Program:  Min   𝑖 (𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑖)

s.t.  𝑖 𝑥𝑖𝑗 = 1 for all j.

Bad example: 1 job of size 1,  m machines   

Convex Program: Sets  𝑥𝑖1 = 1/m     𝑚 ⋅
1

𝑚2 =
1

𝑚

Expression’ i:   = 
1

2
𝑝𝑖𝑗

2 𝑥𝑖𝑗 +
1

2
 𝑗 𝑝𝑖𝑗𝑥𝑖𝑗

2
[𝑥𝑖𝑗

2 = 𝑥𝑖𝑗 valid]  

(assume 𝑤𝑗 = 𝑝𝑖𝑗)

1 32



Fix:  Reducing gap to 3/2

Expression’ i:   = 
1

2
𝑝𝑖𝑗

2 𝑥𝑖𝑗 +
1

2
 𝑗 𝑝𝑖𝑗𝑥𝑖𝑗

2
[𝑥𝑖𝑗

2 = 𝑥𝑖𝑗 valid]  

Still a gap of 2

Add constraint: 𝑂𝑃𝑇 ≥  𝑖  𝑗 𝑝𝑖𝑗
2 𝑥𝑖𝑗 (i.e.  𝑖  𝑗 𝑤𝑖𝑗 𝑝𝑖𝑗 𝑥𝑖𝑗)

Cost ≥ L/2 + Q/2              Cost ≥ L

Somewhat adhoc mix of L and Q

Surprisingly,  integrality gap improves to 3/2  (but not better)



Tight integrality gap example

k jobs:  Size 1 each,  only on machine 1

1 job: Size 𝑘2 on any machine 2,…,k+1

Optimum:  
𝑘 𝑘+1

2
+ 𝑘2 ≈

3

2
𝑘2

Convex Program:  ( 𝑂𝑃𝑇 >
𝐿

2
+

𝑄

2
, 𝑂𝑃𝑇 ≥ 𝐿) 

Quadratic term (Q):  ≈
𝑘2

2
+

1

2
𝑘2

Linear term (L) :  𝑘 + 𝑘2

k

2
1

…

big



New SDP 

Write natural SDP (vectors 𝑣𝑖𝑗,     𝑥𝑖𝑗 = 𝑣𝑖𝑗
2
)

Captures correlations and integrality more effectively

Add  𝑣𝑖𝑗 ⋅ 𝑣𝑖𝑗 = 𝑣0 ⋅ 𝑣𝑖𝑗 (like  𝑥𝑖𝑗 = 𝑥𝑖𝑗
2 )

(𝑣𝑖𝑗 ⋅ 𝑣𝑖𝑗 ’ gives joint probability of j and j’ on i)

Important consequence: Linear and quadratic terms combined more 
systematically

E.g.  For any subset of jobs 𝑆 ⊂ 𝐽

OPT  ≥ L(S)  +   ½  𝐿(𝑆) + ½ 𝑄 (𝑆)

Previous  OPT ≥ L(J)                and  OPT ≥ ½ L(J) + ½ Q(J)



The Rounding Issue

Given the 𝑥𝑖𝑗 (allocation probabilities). How to round?

Randomized rounding stuck at 3/2.

m identical jobs  on m machines.   𝑥𝑖𝑗 = 1/m    (split equally)

OPT = m

Pr[c jobs on a machine] := 𝑝𝑐 ≈ 1/e (1/c!)

E[ c(c+1)/2  𝑝𝑐]  = 3/2 

What would be the right rounding here?

Want to reduce variance



Main Idea

1) If few jobs, do matching type rounding

2) If many “similar” jobs, randomized rounding ok.

Basically, this works

Gandhi et al.  (Randomized pipage) for assignment

Can round, so that get nice negative correlation

(e.g. Pr 𝑥𝑖𝑗𝑥𝑖𝑗 ’ ≤ Pr 𝑥𝑖𝑗 Pr 𝑥𝑖𝑗 ’ )

Our theorem:  Strict negative correlation within “groups”, and 

negative correlation across groups.



Question: Get a more respectable guarantee

With release times, 2  improved to 1.81  (Im, Li’16) (see talk)

Restricted assignment + same smith ratio?  𝑝𝑗 ∈ 𝑤𝑗 , ∞

Improve to 1.21 

(Previous convex program still has gap 3/2)



Open 4:  R|| 𝐶max get 2 − 𝛿 apx or  1.5 + 𝛿 hardness

Landmark result of Lenstra, Shmoys, Tardos: OPT + 𝑝max

𝑥𝑖𝑗 variables     (Simple modern proof via iterated rounding)

Hard to beat even for parallel machines (m+1 unit jobs, m machines)

Configuration LP: 

Variable  𝑥𝑖,𝑆 for each “valid” job S with load ≤ OPT on machine i.

Constraints:   𝑆 𝑥𝑖,𝑆 = 1 ∀𝑖

 

𝑖

.  

𝑆:𝑗∈𝑆

𝑥𝑖,𝑆 = 1 ∀ 𝑗

Consider dual, give separation oracle (apply ellipsoid) 



Lots of progress

Restricted assignment

Svensson’12: 1.94 estimation (configuration LP)

Jansen, Rohwedder’17:   11/6 ≈. 1.83

More recently 1.83 in Quasi-polynomial time

Graph balancing  (Ebenlendr, Krcal, Sgall’08)

Alas, Configuration LP has gap 2 for unrelated case.

Any hope?

Few levels of Sherali Adams  capture configuration LP



Possible direction

Related: Santa Claus problem [Bansal, Sviridenko’06]

Maximize the minimum load  (aka max-min allocation)

Lenstra, Shmoys, Tardos gives  OPT – 𝑝max (could be infinite apx.)

Naïve LP:  Gap 2-1/m  (makepsan)  gives gap m (Santa Claus). 

Restricted assignment: Config. LP O(log log n)   [BS’06]

O(1) non-constructive via  recursive LLL [Feige’08], 

Hypergraph matching [Asadpour, Feige, Saberi’ 09]

Now polytime [Haeupler, Saha, Srinivasan’10], …,[Annamalai’16]

Belief: 2 − 𝑐/𝛼 approx. for makespan iff 𝛼 for Santa Claus



Santa Claus on unrelated machines

Configuration LP  Ω 𝑚1/2 integrality gap

[Asadpour, Saberi’07]:   𝑂(𝑚1/2)   (max entropy matchings)

[Chakrabarty, Chuzhoy, Khanna’08]:  𝑂 𝑁𝜖 apx.  in 𝑁1/𝜖 time

(tour-de-force, amazing ideas, still use config LP)

polylog apx in quasi-poly time.

Perhaps easier (hard) goal: Get O(1) for Santa Claus.



Flow time related metrics

Open Pr. 10:  𝑃 𝑝𝑗 , 𝑟𝑗  𝑗 𝐹𝑗

1| 𝑝𝑗 , 𝑟𝑗 |  𝑗 𝑤𝑗𝐹𝑗

Leonardi Raz’97  O(log n)     + various follow ups

[SW’99] Problem: Can you get O(1) approx.?

Flow time: 𝑓𝑗 = 𝐶𝑗 − 𝑟𝑗
(comp. time – release time)



𝑃 𝑝𝑗 , 𝑟𝑗  

𝑗

𝐹𝑗

Ω(log n) hardness  [Garg-Kumar 06]

O(log n) apx for more general settings

Uniform machines, Restricted assignment, …

Time indexed LP,  fractional flow time objective LP

(surprising, because flow time is quite sensitive)

Very nice use of single source unsplittable flow

Technique breaks down for unrelated machines

[Bansal, Kulkarni’15]: O(log2 𝑛) apx.  via iterated rounding 

Q: Improve it to O(log n) ?



Single source unsplittable flow

Given: Graph G=(V,E)   capacities  𝑐𝑒
Source s.  Various demands 𝑑1, … , 𝑑𝑘 . Feasible Flow 𝑓1, 𝑓2, … , 𝑓𝑘

Goal: Make it unsplittable

Thm [Dinitz, Garg, Goemans’96] : Violate capacity by at most 𝑑max

Easy Corollary: Makespan minimization for restricted assignment

Jobs   𝑑𝑗 = 𝑝𝑗

Machines

Capacity T  (guess for makespan)



Trouble: (Max) Flow time

Instance 1

Instance 2 T

If all release times = 0,   Max flow time =  Makespan



Error can build up

Instance 1

Instance 2



Previous Approaches

Time-indexed LP formulation

𝑥𝑖𝑗𝑡 : How much of job j scheduled on machine i at time t

All the constraints:

(No overload)                   𝑗 𝑥𝑖𝑗𝑡 ≤ 1 for all (i,t)

(each job scheduled)    𝑖(( 𝑡 𝑥𝑖𝑗𝑡)/𝑝𝑖𝑗) ≥ 1                 for all j

Some objective for “fractional” flow time.

(note: LP can put a job on many machines, and schedule the pieces in parallel)



Main new idea

Reducing constraints

Replace  𝑗𝑡 𝑥𝑖𝑗𝑡 ≤ 1 by   “Load ≤ 𝐵/2 for every interval”

Bounded overload: For any interval X of time (s,t) 

Total work assigned to X  ≤ (t-s) + B.

B/2 B/2 B/2



Iterated Rounding

LP    max cx

Ax ≤ b

0 ≤ x ≤ 1

Obs: There is an optimum solution with ≥ n-m variables set to 0-1.

n variables

m non-trivial constraints

Vertex:  determined by  solution of n

(tight) linearly independent constraints

(basic feasible solutions)



Idea

At least half of the jobs assigned integrally

Repeat for O(log n) iterations. 

Argue that not get much worse in each iteration



Weighted Flow Time 1| 𝑝𝑗 , 𝑟𝑗 |  𝑗 𝑤𝑗𝐹𝑗

Can you get an O(1) apx (my favorite scheduling problem) 

Time indexed LP very bad  (fractional vs integral flow time)

polylog(n,P,W)  online  [Chekuri,Khanna,Zhu’01, Bansal, Dhandhere’04]

QPTAS                          [Chekuri, Khanna’02]

O(log log n)  [Bansal, Pruhs’10]

New relaxation, a knapsack cover problem for each time interval

(one knapsack = exponentially many KC inequalities)

After various clean up steps: geometric set-cover with low union 

complexity objects



Weighted Geometric Set Cover

Union Complexity: Take k objects, look at their boundary 
(vertices,edges, holes).  Scales  as  k h(k)

Thm [Varadarajan’10, Chan-Grant-Konemann-Sharpe’12]:  O(log (h(n))) 
apx.

(k2) O(k)O(k log* k) 

[Aronov, de Berg, Ezra, Sharir 11]



Conjecture: The Knapsack Cover LP should be O(1) approx.

(Union complexity approach cannot work directly, need to 

use more structure)

[Im,Moseley]: Can get O(1) apx. For ℓ𝑝-norms for weighted 

flow



Some other Directions

Non-preemptive problems

1||  𝑗 𝐹𝑗 [Kellerer, Tautenham, Woeginger’97]: 𝑛1/2 hardness

Need resource augmentation 

Q:  Get O(1) or polylog apx. with 1 + 𝜖 resource augmentation

[Bansal et al’07] O(1) apx, 12-speedup  via a stronger LP.

But LP has a big gap if < 2 speedup.



Multi-dimensional problems

Job: 𝑝𝑗 = 𝑝𝑗1, … , 𝑝𝑗𝑑 resouces: CPU, memory, …                    

Unrelated  𝑝𝑖𝑗

Vector Packing: Minimize number of bins

Thm [Bansal,Caprara, Sviridenko’06]:  ln d + 1   (if d=O(1))

Round and approx. framework + Configuration LPs

Only 1.001 hardness (d=2)

Question: Get O(1) apx. when d is fixed.

𝑑1−𝜖 hard (via coloring) when d part of input



Multidimensional Problems

m machines, makespan minimization

Thm:   log d / log log d  (even for unrelated case) 

Proof: Iterative Lovasz Local Lemma  

(Leighton, Srinivasan,…)

No non-constant hardness known



Questions!


