
Local	Flow	Partitioning	
for		

Faster	Edge	Connectivity	

Monika	Henzinger,	Satish	Rao,	Di	Wang	
	
	

University	of	Vienna,	UC	Berkeley,	UC	Berkeley	

Edge	Connectivity	
§  Edge-connectivity	λ:	least	number	of	edges	whose	
removal	disconnects	the	graph.	

§  Minimum	cut:	set	of	edges	of	minimum	size	whose	
removal	disconnects	the	graph.	
Ø  Edge-connectivity	=	size	of	minimum	cut	in	
unweighted	graphs	

𝜆=2	

	Prior	Work	

Gabow’91	 𝑂(𝜆𝑚​log ⁠𝑛 )		
	

unweighted		
(multi-)graph	

Kawarabayashi	
&Thorup’15	

𝑂(𝑚 ​log↑12 𝑛)	
	

simple	graph	

Henzinger,	Rao,	
W’17	

𝑂(𝑚 ​log↑2 𝑛​log ⁠​log↑2 𝑛 )	
	

simple	graph		

𝑛	nodes,	𝑚	edges,	min	cut	=	λ	
Simple	graph:	undirected,	unweighted,	no	parallel	edges	
Multi-graph:	can	have	parallel	edges.	

Deterministic	algorithm	

Randomized	algorithm	

Karger’00	 𝑂(𝑚 ​log↑3 𝑛)	 weighted	graph	

Kawarabayashi-Thorup(KT)	
§  Theorem		

	
	
§  Trivial	cut:	only	1	node	on	one	side	of	the	cut.	
§  The	min	degree	𝛿	bounds	the	edge	connectivity	𝜆	

𝝀≤𝜹		

G:	simple,	min	
degree	𝛿	

​𝑂 (𝑚)	
time	

		Multi-graph	 ​𝑮 	with	​
m↓​𝐺  =​𝑂 (​𝑚/𝛿 )	edges	

Non-trivial	min	cut	
in	𝐺	

Min	cut	in	 ​𝐺 	

Kawarabayashi-Thorup(KT)	
§  Theorem		

	
	
§  Gabow’s	algorithm	on	 ​𝐺 

𝑂(𝜆​𝑚↓​𝑮  ​log ⁠𝑚 )= ​𝑂 (𝜆​𝑚 /𝛿 )= ​𝑂 (𝑚)	
§  Assume	𝛿=Ω(​log ⁠𝑛 )		

G:	simple,	min	
degree	𝛿	

​𝑂 (𝑚)	
time	

		Multi-graph	 ​𝑮 	with	​
m↓​𝐺  =​𝑂 (​𝑚/𝛿 )	edges	

Non-trivial	min	cut	
in	𝐺	

Min	cut	in	 ​𝐺 	

𝝀≤𝜹		
	

Low	Conductance	Cut	
	
	
	
Non-trivial	cut	of	size	≤𝛿	has	low	conductance!		has	low	conductance!	
	 2	nodes:	≥	2δ total degree

≤δ edges across the cut

≥2 nodes ⇒ Ω(δ) nodes

Conductance:	𝜙(𝐴)= ​|𝐸(𝐴, ​𝐴 )|/​min ⁠{𝑣𝑜𝑙(𝐴),𝑣𝑜𝑙(​𝐴 )}  	
𝑣𝑜𝑙(𝐴)= ​∑↓𝑣∈𝐴 deg​(𝑣)	

≤
𝛿	

≥𝛿	

Low	Conductance	Cut	
	
	
	
Non-trivial	cut	of	size	≤𝛿	has	low	conductance!		has	low	conductance!	
	 2	nodes:	≥	2δ total degree

≤δ edges across the cut

≥2 nodes ⇒ Ω(δ) nodes

Conductance:	𝜙(𝐴)= ​|𝐸(𝐴, ​𝐴 )|/​min ⁠{𝑣𝑜𝑙(𝐴),𝑣𝑜𝑙(​𝐴 )}  	
𝑣𝑜𝑙(𝐴)= ​∑↓𝑣∈𝐴 deg​(𝑣)	

≤
𝛿	

≥𝛿	
≤
𝛿	

volume is Ω(​𝛿↑2 )	
⟹ conductance	𝑂(​1/𝛿 )	

Local	Graph	Partitioning	

Central	tool	in	[KT’15],	improved	by	us	
	
	
	
	

Given	𝐺	with	𝑚	edges,	\ind	cut	(𝐴, ​𝐴 )	
§  Low	conductance:	𝜙(𝐴)=𝑂(​1/​log ⁠𝑚  )	

§  Local	running	time:	𝑂(𝑣𝑜𝑙(𝐴)​​log↑𝑐  ⁠𝑚 )	
§  Cannot	afford	​𝑂 (𝑚)	in	recursive	decomposition	

𝐴 𝐺\𝐴	𝐺	

PageRank/Diffusion	[ACL’06]	
Input:	1	unit	of	mass	at	a	vertex	v,	rate	of	decay	α

Maintains 2 vectors in n-dimensional space:

§  p =“settled mass” and r = “unsettled mass”

§  Initially: p = 0, r = 1 at v and 0 everywhere else

§  Repeat:	
§  for	every	vertex u:

§  p’(u) = p(u) + α r(u) mass	settles	

§  r’(u) = (1 – α) r(u)/2

§  For	each	neighbor	v of u: �

r’(v) = r(v) + (1- α)r(u)/(2deg(u)) mass	pushed	to	neighbors	

§  p = p’, r = r’

	

PageRank/Diffusion	[ACL’06]	

§  Input:	starting	distr.,	rate	of	decay	α

§  Settle fraction α of residual mass per round

§  Spread half of the remaining evenly to neighbors

§  ε-approx. of limiting distribution in time 𝑂(1/(𝛼𝜀))

	

PageRank/Diffusion	[ACL’06]	

Input:	starting	distr.,	rate	of	decay	α

§  Typical	local	partitioning	result:	

§  Quadratic	loss	in	cut	quality	and	running	time	

	
	

∃ conductance	𝑶(​​𝝓↑𝟐 /​𝐥𝐨𝐠⁠𝒎  )	cut	
		

Find	conductance	𝝓	cut	𝐴	in	time	 ​𝑶 (​𝒗𝒐𝒍(𝑨)/​𝝓↑𝟐  )		cut	𝐴	in	time	 ​𝑶 (​𝒗𝒐𝒍(𝑨)/​𝝓↑𝟐  )		in	time	 ​𝑶 (​𝒗𝒐𝒍(𝑨)/​𝝓↑𝟐  )	

 ⇝	

PageRank/Diffusion	[ACL’06]	

Input:	starting	distr.,	rate	of	decay	α

§  Settle fraction α of residual mass per round

§  Spread half of the remaining evenly to neighbors

§  ε-approx. of limiting distribution in time 𝑂(1/(𝛼𝜀))

§  Typical	local	partitioning	result:	

	

§  Quadratic	loss	in	cut	quality	and	running	time	
	

∃ conductance	𝑶(​​𝝓↑𝟐 /​𝐥𝐨𝐠⁠𝒎  )	cut	
		

Find	conductance	𝝓	cut	𝐴	in	time	 ​𝑶 (​𝒗𝒐𝒍(𝑨)/​𝝓↑𝟐  )		cut	𝐴	in	time	 ​𝑶 (​𝒗𝒐𝒍(𝑨)/​𝝓↑𝟐  )		in	time	 ​𝑶 (​𝒗𝒐𝒍(𝑨)/​𝝓↑𝟐  )	
 ⇝	

Flow-based	Method	
§  Polylog	loss	in	cut	quality	

§  Dif\icult	to	make	the	running	time	local	
	
	

Flow-based	Method	
§  Polylog	loss	in	cut	quality	

§  Dif\icult	to	make	the	running	time	local	
Two-level	structure	[HRW’17]	
§  Unit-Flow		

§  Try	to	\ind	low	conductance	cut	
§  Running	time	“global”	~	size	of	instance

§  Excess Scaling

§  Get running time local

§  Control instance size for Unit-Flow via value of unit.

Unit-Flow(G,	Δ,	𝜙)		
Called	repeatedly	on	“partial”	\low	problems	
	
	
	
	
	

Input:	
Graph	G	
Source	supply	Δ:		∀𝒗 ∆(𝒗)≤𝟐 deg(𝒗)	units	
Parameters:	target	conductance	ϕ

Flow	Problem:	
Each	𝑣	has	sink	capacity	deg​(𝑣)	units.			has	sink	capacity	deg​(𝑣)	units.		
Edge	capacities	= ​1/𝜙 	units.	

Unit-Flow(G,	Δ,	𝜙)		
Variant	of	pre\low	push-relabel		
	
	
	
	
	
	
	
	
	
	

Pre:low	𝑓:𝑉×𝑉→ℝ	
•  Antisymmetry:	𝑓(𝑢,𝑣)=−𝑓(𝑣,𝑢)	
•  Non-de\icient	\lows:	∀𝑣, ∑𝑢↑▒𝑓(𝑣,𝑢) ≤∆(𝑣)	
•  Respects	edge	capacities	
𝒇(𝒗)=∑𝑢↑▒𝑓(𝑢,𝑣)+∆(𝑣) 	

Unit-Flow(G,	Δ,	𝜙)		
Variant	of	pre\low	push-relabel		
	
	
	
	
	
	
	
	
	
	

Pre:low	𝑓:𝑉×𝑉→ℝ	
Antisymmetry:	𝑓(𝑢,𝑣)=−𝑓(𝑣,𝑢)	
Non-de\icient	\lows:	∀𝑣, ∑𝑢↑▒𝑓(𝑣,𝑢) ≤∆(𝑣)	
Respects	edge	capacities	
𝒇(𝒗)=∑𝑢↑▒𝑓(𝑢,𝑣)+∆(𝑣) 	

Push-relabel	algorithm:	
Each	vertex	has	a	height,	starting	at	0.	
Repeatedly	pick	any	v with	excess	(i.e.	𝑓(𝑣)>deg​(𝑣))	

Push:	send	excess	to	lower	neighbor	along	
							edges	with	residual	capacity.	

Relabel:	if	not	possible,	raise	height	of	v		by	1.	

Unit-Flow(G,	Δ,	𝜙)		
Key	adaptations	
§  Upper-bound	height	by	𝐡= ​​𝒍𝒐𝒈⁠𝒎 /𝝓 ,	

§  Flow	solution	not	guaranteed:		
Might	not	push	all	\low	to		
sources	

	
	
	
	
	
	
	
	

Unit-Flow(G,	Δ,	𝜙)		
Key	adaptations	
§  Upper-bound	height	by	𝐡= ​​𝒍𝒐𝒈⁠𝒎 /𝝓 ,	

§  Flow	solution	not	guaranteed	
§  But then ∃ conductance 𝑂(𝜙) �

“level	cut”

	
	
	
	
	
	
	
	

Region	growing	argument	
​(1+𝜙)↑ℎ ≫𝑚		

Unit-Flow(G,	Δ,	𝜙)		
Key	adaptations	
§  Upper-bound	height	by	𝐡= ​​𝒍𝒐𝒈⁠𝒎 /𝝓 ,	

§  Flow	solution	not	guaranteed	
§  ∃ conductance 𝑂(𝜙) “level	cut”

§  Upper-bound	excess	on	vertex	
§  Maintain	𝑓(𝑣)≤2deg​(𝑣),	assumed	at	start	
⇒	Total	excess		≤vol(𝐴)	at	the	end	

	
	
	
	
	
	
	
	

Region	growing	
​(1+𝜙)↑ℎ ≫𝑚		

Unit-Flow(G,	Δ,	𝜙)		
𝑓(𝑣)=	#	units	of	supply	on	𝑣	at	the	end		
§  Either	routes	all	source	supply	to	sinks	
∀𝑣 :𝑓(𝑣)≤deg​(𝑣)	

§  Or	\inds	conductance	𝑂(𝜙)	cut	(𝐴, ​𝐴 ),		
												and	total	excess	bounded	by	𝑣𝑜𝑙(𝐴)	
total excess=∑𝑣↑▒​max ⁠(0,𝑓(𝑣)− ​deg ⁠(𝑣) )  	
	 	 	 	 						≤𝑣𝑜𝑙(𝐴)	

§  Explored	subgraph	volume ≈∑𝑣↑▒∆(𝑣) 	=	total	
units	of	\low	

	

Unit-Flow(G,	Δ,	𝜙)		
𝑓(𝑣)=	#	units	of	supply	on	𝑣	at	the	end		
§  Either	routes	all	source	supply	to	sinks	
∀𝑣 :𝑓(𝑣)≤deg​(𝑣)	

§  Or	\inds	conductance	𝑂(𝜙)	cut	(𝐴, ​𝐴 ),		
												and	total	excess	≤𝑣𝑜𝑙(𝐴)		
Running	time:	𝑂(​|Δ|​log ⁠𝑚 /𝜙 ), |∆|=∑𝑣↑▒∆(𝑣) ,	proportional	to	
volume	of	explored	subgraph	
	

	

§  Running	time:	𝑂(​|Δ|​log ⁠𝑚 /𝜙 ), |∆|=∑𝑣↑▒∆(𝑣) 	
But	when	cut(𝐴, ​𝐴 )	is	returned	we	need	time	 ​𝑂 (​𝑣𝑜𝑙(𝐴)/
𝜙 )	

§  Idea:		
§  Repeatedly	run	Unit-Flow	for	doubling	values	of	|Δ|	until	

Unit-Flow	returns	a	cut	(𝐴, ​𝐴 )	with	excess≥Ω(​|Δ|/​log ⁠𝑛  )	
Ø  𝑣𝑜𝑙(𝐴)≥Ω(​|Δ|/​log ⁠𝑛  )	

§  Can	bound	running	time	of	all	preceding	calls	to	Unit-Flow	
by	𝑂(​𝑣𝑜𝑙(𝐴)​log↑2 𝑛/𝜙 )	

§  Done	by	Excess	Scaling	

Idea:		
§  Repeatedly	run	Unit-Flow	for	doubling	values	of	|Δ|	
until	Unit-Flow	returns	a	cut	(𝐴, ​𝐴 )	with	𝑣𝑜𝑙(𝐴)≥Ω(​|
Δ|/​log ⁠𝑛  )	

§  Can	bound	running	time	of	all	preceding	calls	to	Unit-
Flow	by	𝑂(​𝑣𝑜𝑙(𝐴)​log↑2 𝑛/𝜙 )	

§  If	never	a	“large	enough”	cut	is	returned	then	
∑𝑗↑▒𝑣𝑜𝑙(​𝐴↓𝑗 )  is	“small”	and	the	(weighted)	sum	of	
the	\lows	returned	by	all	the	Unit-Flow	routes	“almost	
all”	\low	

Excess	Scaling	
Input:	
Graph	G	
Source	supply	∆,	|Δ|=∑𝑣↑▒∆(𝑣) =2𝑚		

Flow	problem:	
Each	v		sink	of	capacity	𝐝𝐞𝐠​(𝒗)	
Suf\icient	edge	capacity	for	all	calls	to	Unit-Flow	
	

	

Excess	Scaling	
Source	supply	∆,	|Δ|=∑𝑣↑▒∆(𝑣) =2𝑚		
Each	v		sink	of	capacity	𝐝𝐞𝐠​(𝒗)	
Divide	into	“growing”	phases	for	Unit-Flow	
§  Start	with	large	enough	unit	value	𝜇= ​​max┬𝑣  ⁠​Δ(𝑣)/2

deg(𝑣)  	
​Δ↓0 = ​∆/𝜇  → ​∆↓0 (𝑣)≤2deg​(𝑣),	

Problem	size:	 ​2deg ⁠(𝑣) 	
v

Excess	Scaling	
Source	supply	∆,	|Δ|=∑𝑣↑▒∆(𝑣) =2𝑚		
Each	v		sink	of	capacity	𝐝𝐞𝐠​(𝒗)	
Divide	into	“growing”	phases	for	Unit-Flow	
§  Start	with	large	enough	unit	value	𝜇= ​​max┬𝑣  ⁠​Δ(𝑣)/2

deg(𝑣)  	
​Δ↓0 = ​∆/𝜇  → ​∆↓0 (𝑣)≤2deg​(𝑣),	

§  Either	returns	low	conductance	cut	or		
∀𝑣:𝑓(𝑣)≤deg​(𝑣)	

Problem	size:	 ​2deg ⁠(𝑣) 	
v

Excess	Scaling	
Source	supply	∆,	|Δ|=∑𝑣↑▒∆(𝑣) =2𝑚		
Each	v		sink	of	capacity	𝐝𝐞𝐠​(𝒗)	
Divide	into	“growing”	phases	for	Unit-Flow	
§  Start	with	large	enough	unit	value	𝜇= ​​max┬𝑣  ⁠​Δ(𝑣)/2

deg(𝑣)  	
​Δ↓0 = ​∆/𝜇  → ​∆↓0 (𝑣)≤2deg​(𝑣),	

§  Either	returns	low	conductance	cut:	STOP	
or	∀𝑣:𝑓(𝑣)≤deg​(𝑣):	RESCALE	and	CALL	Unit-Flow	
again	

v

Excess	Scaling	
Source	supply	∆,	|Δ|=∑𝑣↑▒∆(𝑣) =2𝑚		
Each	v		sink	of	capacity	𝐝𝐞𝐠​(𝒗)	
§  Start	with	large	enough	unit	value	𝜇	such	that	
	∀𝑣: ​Δ↓0 (𝑣)= ​∆(𝑣)/𝜇 ≤2deg​(𝑣)	

§  Iteratively	call	Unit-Flow	until	low	conductance	cut	with	
“large”	volume	is	returned:

Ø  If	Unit-Flow	does	not	\ind	such	a	cut,	then	∀𝑣:𝑓(𝑣)≤ ​

deg ⁠(𝑣) :Set ​Δ↓𝑗+1 ≈​2𝑓↓𝑗  ,	i.e.	|Δ| roughly	doubles

Ø  Volume	of	explored	subgraph,	roughly	doubles

Explored	subgraph	volume:	​
2deg ⁠(𝑣) →​4deg ⁠(𝑣) 

→​8deg ⁠(𝑣) →​16deg ⁠(𝑣) …		 v

Excess	Scaling	
Low	conductance	cut	in	local	time	
§  Terminate	when	encounter	“good	cut”	=	Low	conductance	
+	large	volume	
§  𝑗-th	Unit-Flow:	running	time	𝑂(​|​Δ↓𝑗 |​log ⁠𝑚 /𝜙 )		
§  Running	time	of	all	previous	Unit-\low:	𝑂(​|​Δ↓𝑗 |​log ⁠𝑚 /

𝜙 )		
	
	

	

Excess	Scaling	
Low	conductance	cut	in	local	time	
§  Terminate	when	encounter	“good	cut”	=	Low	conductance	
+	large	volume	
§  𝑗-th	Unit-Flow:	running	time	𝑂(​|​Δ↓𝑗 |​log ⁠𝑚 /𝜙 )		
§  Running	time	of	all	previous	Unit-\low:	𝑂(​|​Δ↓𝑗 |​log ⁠𝑚 /

𝜙 )		
§  Cut	​𝐴↓𝑗 	returned	by	last	Unit-Flow	

§  Low	conductance:		𝑂(𝜙)	
§  Large	volume:		𝐯𝐨𝐥(𝑨)=𝛀(​| ​𝜟↓𝒋 |/​𝒍𝒐𝒈⁠𝒎  )	

§  Conductance	𝝓	cut	𝑨	in	time	𝑶(​𝒗𝒐𝒍(𝑨)​​𝒍𝒐𝒈↑𝟐  ⁠𝒎 /𝝓 )		cut	𝑨	in	time	𝑶(​𝒗𝒐𝒍(𝑨)​​𝒍𝒐𝒈↑𝟐  ⁠𝒎 /𝝓 )		in	time	𝑶(​𝒗𝒐𝒍(𝑨)​​𝒍𝒐𝒈↑𝟐  ⁠𝒎 /𝝓 )	
	

	

Excess	Scaling	
Low	conductance	cut	in	local	time	
§  Terminate	when	encounter	“good	bottleneck”	

§  𝑗-th	Unit-Flow:	running	time	𝑂(​|​Δ↓𝑗 |​log ⁠𝑚 /𝜙 )		-th	Unit-Flow:	running	time	𝑂(​|​Δ↓𝑗 |​log ⁠𝑚 /𝜙 )		
§  Running	time	of	all	previous	Unit-\low:	𝑂(​|​Δ↓𝑗 |​log ⁠𝑚 /

𝜙 )		
§  Cut	​𝐴↓𝑗 	returned	by	last	Unit-Flow	

§  Low	conductance:		𝑂(𝜙)	
§  Large	volume:		𝐯𝐨𝐥(𝑨)=𝛀(​| ​𝜟↓𝒋 |/​𝒍𝒐𝒈⁠𝒎  )	

§  Conductance	𝝓	cut	𝑨	in	time	𝑶(​𝒗𝒐𝒍(𝑨)​​𝒍𝒐𝒈↑𝟐  ⁠𝒎 /𝝓 )		cut	𝑨	in	time	𝑶(​𝒗𝒐𝒍(𝑨)​​𝒍𝒐𝒈↑𝟐  ⁠𝒎 /𝝓 )		in	time	𝑶(​𝒗𝒐𝒍(𝑨)​​𝒍𝒐𝒈↑𝟐  ⁠𝒎 /𝝓 )	
§  Otherwise	\low	spread	over	𝐺,	almost	all	supply	routed	to	,	almost	all	supply	routed	to	
sinks	

	
	

	

	

	

Excess	Scaling	+	
Unit-Flow	

vs.	 PageRank	

Spread	“stuff”	to	:ind	bottleneck	
Flow	routing	 Probability	diffusion	

Fail	when	no	good	enough	“bottleneck”,	so	“stuff”	
spreads	over	entire	graph		

	

	

Excess	Scaling	+	
Unit-Flow	

vs.	 PageRank	

Spread	“stuff”	to	:ind	bottleneck	
Flow	routing	 Probability	diffusion	

Fail	when	no	good	enough	“bottleneck”,	so	“stuff”	
spreads	over	entire	graph		

Quality	of	cut	vs.	How	easy	to	spread	“stuff”	
𝑈=𝑂(​1/𝜙 )	
	

𝛼=𝑂(​𝜙↑2 )	

	

	

Excess	Scaling	+	
Unit-Flow	

vs.	 PageRank	

Spread	“stuff”	to	:ind	bottleneck	
Flow	routing	 Probability	diffusion	

Fail	when	no	good	enough	“bottleneck”,	so	“stuff”	
spreads	over	entire	graph		

Quality	of	cut	vs.	How	easy	to	spread	“stuff”	
𝑈=𝑂(​1/𝜙 )	
	

𝛼=𝑂(​𝜙↑2 )	

Quality	of	cut	vs.	Running	time	
​𝑂 (​𝑣𝑜𝑙(𝐴)/𝜙 )	 ​𝑂 (​𝑣𝑜𝑙(𝐴)/​𝜙↑2  )	

	

Wrap-up	

		Flow-based	local	low	conductance	method	

§  polylog	loss	versus	quadratic	loss	of	PageRank	

		Framework	developed	in	[KT’15]	

		Appropriate	interface		

	

Deterministic	𝑂(𝑚​​log↑2  ⁠𝑚 ​log ⁠​lo​g↑2  ⁠𝑚)   algorithm	for	

min	cut	in	simple	unweighted	graphs		

Open	questions	

Min	cut	in	more	general	graphs:	

§  Determ.	𝑜(𝑚𝑛)	alg.	for	multi-	or	weighted	graphs	

§  Directed	graphs	

Experimental	evaluation	

	
Further	applications	of	\low-based	local	method:	

§  Local	clustering	(ICML‘17)	

