Local Flow Partitioning
for
Faster Edge Connectivity

Monika Henzinger, Satish Rao, Di Wang

University of Vienna, UC Berkeley, UC Berkeley

Edge Connectivity

= Edge-connectivity A: least number of edges whose
removal disconnects the graph.

= Minimum cut: set of edges of minimum size whose
removal disconnects the graph.

» Edge-connectivity = size of minimum cut in

unweighted graphs

Prior Work

Deterministic algorithm

Gabow’'91 O(Amlogn) unweighted
(multi-)graph
Kawarabayashi | O(2 logT2 n) simple graph
&Thorup’l5
Henzinger, Rao, O(m logT2 nloglogT2 n) simple graph
W17
Randomized algorithm
Karger'00 O(m logT3 n) weighted graph

nnodes, . edges, min cut = A

Simple graph: undirected, unweighted, no parallel edges
Multi-graph: can have parallel edges.

Kawarabayashi-Thorup(KT)

= Theorem

G: simple, min ¢2(» Multi-graph ¢ with
time

degree s ‘ mi¢ =0 (m/5) edges
Non-trivial min cut “ Min cutin ¢

In ¢

= Trivial cut: only 1 node on one side of the cut.
= The min degree J’bounds the edge connectivity 4

A<O

Kawarabayashi-Thorup(KT)

= Theorem

G: simple, min ¢2(» Multi-graph ¢ with
time

degree s ‘ mi¢ =0 (m/5) edges

Non-trivial min cut > Min cutin ¢
in ¢

= Gabow's algorithm on &
O(Aml& logm)=0 (Am /&)=0 (m)
= Assume 0= (logn) A<d

Low Conductance Cut

Conductance: ¢(4)=/£(4,4)]/ min{vol(A),vol(A)}
vol(A)=Y JveA deg(v)

Non-trivial cut of size <d'has low conductance!

20 2 nodes: > 26 total degree
5 <0 edges across the cut
=5\ >2 nodes = (1(8) nodes

Low Conductance Cut

Conductance: ¢(4)=/£(4,4)]/ min{vol(A),vol(A)}
vol(A)=Y JveA deg(v)

Non-trivial cut of size <d'has low conductance!

20 . 2 nodes: > 26 total degree
5 <0 edges across the cut
55\ >2 nodes = (1(8) nodes
volz(sn
Y .
< volume is Q(572)
\5 = conductance o(1/5)

Local Graph Partitioning

Central tool in [KT'15], improved by us

Given & with 7z edges, find cut (4,4)
= Low conductance: ¢(4)=0(1/logm)
= Local running time: 0(vo/(A)logTc m)

= (Cannot afford 0 () in recursive decomposition

PageRank/Diffusion [ACL'06]

Input: 1 unit of mass at a vertex v, rate of decay a

Maintains 2 vectors in n-dimensional space:

= p ="settled mass” and r = “unsettled mass”

= Initially: p=0,r =1 atvand 0 everywhere else

= Repeat:
= for every vertex u:
= p’'(w) =pu) + ar(u) mass settles

* r'(w)=>0-ar)/2
= For each neighbor v of u:
r'(v) =r(v) + (1- ©)r(u)/(2deg(u)) mass pushed to neighbors

" p=p,r=r

PageRank/Diffusion [ACL'06]

Input: starting distr., rate of decay a
Settle fraction a of residual mass per round
Spread half of the remaining evenly to neighbors

g-approx. of limiting distribution in time O(1/(a¢))

PageRank/Diffusion [ACL'06]

Input: starting distr., rate of decay a

= Typical local partitioning result:
3 conductance o(#72 flogm) cut

Find conductance ¢ cut4in time 0 (vol(4)/$12)

= (Quadratic loss in cut quality and running time

PageRank/Diffusion [ACL'06]

Input: starting distr., rate of decay a

= Settle fraction a of residual mass per round

= Spread half of the remaining evenly to neighbors

= g-approx. of limiting distribution in time O(1/(a¢))
= Typical local partitioning result:

3 conductance o(#72 Nlogm) cut

Find conductance ¢ cut'4in time 0 (vol(A)/$p12)

= Quadratic loss in cut quality and running time

Flow-based Method

= Polylog loss in cut quality

= Difficult to make the running time local

Flow-based Method

= Polylog loss in cut quality

= Difficult to make the running time local
Two-level structure [HRW'17]
= Unit-Flow

= Try to find low conductance cut

= Running time “global” ~ size of instance

= [EXxcess Scaling
= (Getrunning time local

= (Control instance size for Unit-Flow via value of unit.

Unit-Flow(G, A, ¢)

Called repeatedly on “partial” flow problems

Input:
Graph G
Source supply A: Vo A(w)<2 deg(v) units
Parameters: target conductance ¢

Flow Problem:
Each »has sink capacity deg(») units.
Edge capacities =1/¢ units.

Unit-Flow(G, A, ¢)

Variant of preflow push-relabel

Preflow £ /xy-R
* Antisymmetry: f(wv)=—/f(v,u)
 Non-deficient flows: vy, JutéEf(v,u) <A(v)

Unit-Flow(G, A, ¢)

Variant of preflow push-relabel

Preflow £ /xy-R
Antisymmetry: f(uv)=—f(v,u)

Push-relabel algorithm:
Each vertex has a height, starting at 0.

Repeatedly pick any v with excess (i.e. f(v)>deg(?))
Push: send excess to lower neighbor along
edges with residual capacity.

Relabel: if not possible, raise height of v by 1.

Unit-Flow(G, A, ¢)

Key adaptations h =

= Upper-bound height by h=Zogm , h-1
= Flow solution not guaranteed:

Might not push all flow to
sources * = A

>|

Unit-Flow(G, A, @)

Key adaptations h 3
= Upper-bound height by h=logm /¢, b1
* Flow solution not guaranteed

= But then 3 conductance O(¢@)
“level cut”

<= A

>|

Region growing argument
(1+@)Th>m

Unit-Flow(G, A, @)

Key adaptations AL VAN

= Upper-bound height by h=Zogm , h-1

* Flow solution not guaranteed
*= 3 conductance O(@) “level cut”

<= A

Region growing 1
(1+@)Th>m

>|

= Upper-bound excess on vertex

= Maintain f(7)<2deg(v), assumed at start
= Total excess <vol(A) at the end

Unit-Flow(G, A, @)

/(v)= # units of supply on rat the end

= Either routes all source supply to sinks

Vv:.f(v)<deg(v)
= Or finds conductance O(@) cut (4,4),
and total excess bounded by vo/(A)

Unit-Flow(G, A, ¢)

/(v)= # units of supply on rat the end

= Either routes all source supply to sinks
Vv:.f(v)<deg(v)

= Or finds conductance O(@) cut (4,4),

and total excess <vo/(A)

volume of explored subgraph

But when cut(4,4) is returned we need time O (vo/(A)/

®)

= Jdea:

Repeatedly run Unit-Flow for doubling values of /A/ until
Unit-Flow returns a cut (4,4) with excess=Q(/A//logn)

> vol(A)=0([A]/logn)

Can bound running time of all preceding calls to Unit-Flow
by O(vol(A)ogT2 n/P)

Done by Excess Scaling

Idea:

. JA]
(A,A) vol(A)=Q(/

A//logn)

O(vol(A)ogT2 n/P)
* Ifnever a “large enough” cut is returned then

the flows returned by all the Unit-Flow routes “almost
all” flow

Excess Scaling

Input:
Graph G

Flow problem:
Each v sink of capacity deg(»)

Sufficient edge capacity for all calls to Unit-Flow

Excess Scaling

Each v sink of capacity deg(#)
Divide into “growing” phases for Unit-Flow
= Start with large enough unit value g/=max+v A(v) /2

deg(v)
A0 =A/u — AJO (v)<2deg(v),

€

Problem size: 2deg(v)

Excess Scaling

Each v sink of capacity deg(#)
Divide into “growing” phases for Unit-Flow

= Start with large enough unit value g/=max+v A(v) /2

deg(v)
A0 =A/u — AJO (v)<2deg(v),
= Either returns low conductance cut or

Vv f(v)<deg(v)

Problem size: 2deg(v)

Excess Scaling

Each v sink of capacity deg(#)
Divide into “growing” phases for Unit-Flow

= Start with large enough unit value g/=max+v A(v) /2
deg(v)

A0 =A/u — AJO (v)<2deg(v),

= Either returns low conductance cut: STOP

or Vv.f(v)<deg(v): RESCALE and CALL Unit-Flow
again

Excess Scaling

Each v sink of capacity deg(?)

= Start with large enough unit value # such that
Vv A0 (v)=A(v) /u <2deg(v)
= [teratively call Unit-Flow until low conductance cut with
“large” volume is returned:
» If Unit-Flow does not find such a cut, then Vo f(v)<
deg(v):SetAlj+1 =2/fl/ ,ie. [A/ roughly doubles
» Volume of explored subgraph, roughly doubles

Explored subgraph volume:
2deg(v) »4deg(v)
—8deg(v) »16deg(v) ...

Excess Scaling

Low conductance cut in local time

= Terminate when encounter “good cut” = Low conductance
+ large volume

= /-th Unit-Flow: running time O(/Al/ logm /@)
= Running time of all previous Unit-flow: O(/A{; flogm /
?)

Excess Scaling

Low conductance cut in local time
= Terminate when encounter “good cut” = Low conductance
+ large volume
= /-th Unit-Flow: running time O(/Al/ logm /@)
= Running time of all previous Unit-flow: O(/A{; flogm /
?)
= Cut AJ/ returned by last Unit-Flow
= Low conductance: J(¢)
= Large volume: vol(4)=Q(\4Yj |/logm)
= Conductance ¢ cut 4in time O(vol(A)logT2 m /)

Excess Scaling

1 O(JAd) flogm /@)
. O(JAd) flogm /
@)
i Al
o(P)
vol(A)=Q(|41j | /logm)
o @gcut 4 O(vol(A)logT2 m /@)

= Otherwise flow spread over &, almost all supply routed to
sinks

Excess Scaling + VS. PageRank
Unit-Flow

Spread “stuff” to find bottleneck
Flow routing Probability diffusion

Fail when no good enough “bottleneck”, so “stuff”
spreads over entire graph

Excess Scaling + VS. PageRank

Unit-Flow
Spread “stuff” to find bottleneck
Flow routing Probability diffusion

Fail when no good enough “bottleneck”, so “stuff”
spreads over entire graph

Quality of cut vs. How easy to spread “stuff”
U=0(1/9) a=0(p12)

Excess Scaling + VS. PageRank

Unit-Flow
Spread “stuff” to find bottleneck
Flow routing Probability diffusion

Fail when no good enough “bottleneck”, so “stuff”
spreads over entire graph

Quality of cut vs. How easy to spread “stuff”
U=0(1/9) a=0(p12)

Quality of cut vs. Running time

O (vol(4)/¢) O (vol(A)/$T12)

Wrap-up

Flow-based local low conductance method
= polylog loss versus quadratic loss of PageRank
Framework developed in [KT'15]

Appropriate interface

Deterministic O(mlogT2 mloglog 72) algorithm for

min cut in simple unweighted graphs

Open questions

Min cut in more general graphs:
= Determ. o(727) alg. for multi- or weighted graphs
= Directed graphs

Experimental evaluation

Further applications of flow-based local method:

= Local clustering (ICML‘17)

